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Abstract

We consider the El Farol bar problem, also known as the minority game (W. B. Arthur,

The American Economic Review, 84(2): 406{411 (1994), D. Challet and Y.C. Zhang, Phys-

ica A, 256:514 (1998)). We view it as an instance of the general problem of how to con�gure

the nodal elements of a distributed dynamical system so that they do not \work at cross

purposes", in that their collective dynamics avoids frustration and thereby achieves a pro-

vided global goal. We summarize a mathematical theory for such con�guration applicable

when (as in the bar problem) the global goal can be expressed as minimizing a global energy

function and the nodes can be expressed as minimizers of local free energy functions. We

show that a system designed with that theory performs nearly optimally for the bar problem.

1 Introduction

In many distributed dynamical systems there is little centralized communication and control

among the individual nodal elements. Despite this handicap, typically we wish to design the

system so that its dynamical behavior has some desired form. Often the quality of that behavior

can be expressed as a (potentially path-dependent) global energy function, G. The associated

design problem is particularly interesting when we can also express the individual nodal elements

� as minimizers of \local" energy functions � . Given G, this reduces the problem to determining

the optimal associated f�g.

Because the argument lists of the � may overlap, what action � should take at time t to

minimize � may depend on what actions the other nodes take at t. Since without binding

contracts � cannot know those other actions ahead of time, it cannot assuredly minimize � in

general. We are particularly interested in cases where each � addresses this problem by using

machine-learning (ML) techniques to determine its actions. (In its use of such techniques that

trade o� exploration and exploitation, such an � often approximates a stochastic node following

the distribution that minimizes �'s free energy | see below.) In such cases the challenge is to

choose the f�g so that the associated system of good (but suboptimal) ML-based nodes induces

behavior that best minimizes the provided function G.

We refer to a system designed this way, or more generally to a system investigated from

this perspective, as a COllective INtelligence (COIN) [14, 15]. To agree with bar problem and

game-theory terminology, we refer to the nodes as agents, G as (minus) world utility, and the
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f�g as (minus) private utilities. As an example of this terminology, a spin glass in which each

spin � is at an energy minimum given the states of the other spins is a \Nash equilibrium" of an

associated \game" [9], a game formed by identifying each agent with a spin � and its associated

private utility function with �'s energy function.

Arthur's bar problem [1] can be viewed as a problem in designing COINs. Loosely speaking,

in this problem at each time t each agent � decides whether to attend a bar by predicting, based

on its previous experience, whether the bar will be too crowded to be \rewarding" at that time,

as quanti�ed by a reward function RUD;� . The greedy nature of the agents frustrates the global

goal of maximizing G =
P

�
RUD;� at t. This is because if most agents think the attendance will

be low (and therefore choose to attend), the attendance will actually be high, and vice-versa.

This frustration e�ect makes the bar problem particularly relevant to the study of the physics of

emergent behavior in distributed systems [3, 4, 5, 8, 11, 12, 16].

In COIN design we try to avoid such e�ects by determining new utilities f�g so that all

agents trying to minimize those new utilities means that G is also minimized. (Of course, we

wish to determine the f�g without �rst explicitly solving for the minimum of G.) As an analogy,

economic systems sometimes have a \tragedy of the commons" (TOC) [10], where each agent's

trying maximize its utility results in collective behavior that minimizes each agent's utility, and

therefore minimizes minimizes G =
P

�
RUD;�. One way the TOC is avoided in real-world

economies is by recon�guring the agents' utility functions from fRUD;�g to a set of f�g that

results in better G, for example via punitive legislation like anti-trust regulations. Such utility

modi�cation is exactly the approach used in COIN design.

We recently applied such COIN design to network packet routing [15]. In conventional packet

routing each router uses a myopic shortest path algorithm (SPA), with no concern for side-e�ects

of its decisions on an external world utility like global throughput (e.g., for whether those decisions

induce bottlenecks). We found that a COIN-based system has signi�cantly better throughput

than does a conventional SPA [15], even when the agents in that system had to predict quantities

(e.g., delays on links) that were directly provided to the SPA.

In this paper we confront frustration e�ects more directly, in the context of the bar problem.

In the next section we present (a small portion of) the theory of COINs. Then we present

experiments applying that theory to the distributed control of the agents in the bar problem.

Those experiments indicate that by using COIN theory we can avoid the frustration in the bar

problem and thereby achieve almost perfect minimization of the global energy.

2 Theory of COINs

We consider the state of the system across a set of consecutive time steps, t 2 f0; 1; :::g. Without

loss of generality, all relevant characteristics of agent � at time t | including its internal pa-

rameters at that time as well as its externally visible actions | are encapsulated by a Euclidean

vector �
�;t
, the state of agent � at time t. �

;t
is the set of the states of all agents at t, and � is

the state of all agents across all time.

So world utility is G(�), and when � is an ML algorithm \striving to increase" its private

utility, we write that utility as �(�). The mathematics is generalized beyond such ML-based

agents through an arti�cial construct: the personal utilities fg�(�)g. We restrict attention to

utilities of the form
P

t
Rt(�

;t
) for reward functions Rt.

We are interested in systems whose dynamics is deterministic. (This covers in particular any

system run on a digital computer.) We indicate that dynamics by writing � = C(�
;0
). So all
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characteristics of an agent � at t = 0 that a�ects the ensuing dynamics of the system, including

in particular its private utility if it has one, must be included in �
�;0

.

De�nition: A system is factored if for each agent � individually,

g�(C(�
;0
)) � g�(C(�

0

;0
)) , G(C(�

;0
)) � G(C(� 0

;0
)) ; (1)

for all pairs �
;0
and � 0

;0
that di�er only for node �.

For a factored system, the side e�ects of a change to �'s t = 0 state that increases its personal

utility cannot decrease world utility. If the separate agents have high personal utilities, by luck

or by design, then they have not frustrated each other, as far as G is concerned.

The de�nition of factored is carefully crafted. In particular, it does not concern changes in

the value of the utility of agents other than the one whose state is varied. Nor does it concern

changes to the states of more than one agent at once. Indeed, consider the following alternative

desideratum to having the system be factored: any change to �
;0
that simultaneously improves

all agents' ensuing utilities must also improve world utility. Although it seems quite reasonable,

there are systems that obey this desideratum and yet quickly evolve to a minimum of world

utility. For example, any system that has G(�) =
P

�
g�(�) obeys this desideratum, and yet as

shown below, such systems entail a TOC in the the bar problem.

For a factored system, when every agents' personal utility is optimizal, given the other agents'

behavior, world utility is at a critical point [14]. In game-theoretic terms, optimal global behavior

corresponds to the agents' reaching a personal utility Nash equilibrium for such systems [9].

Accordingly, there can be no TOC for a factored system.

As a trivial example, if g� = G 8�, then the system is factored, regardless of C. However

there exist other, often preferable sets of fg�g, as illustrated in the following development.

De�nition: The (t = 0) e�ect set of node � at � , Ceff

�
(�), is the set of all components �

�0;t0

for which @�
�;0

(C(�
;0
))�0;t0 6= ~0. Ceff

�
with no speci�cation of � is de�ned as [�2CC

eff

�
(�).

De�nition: Let � be a set of agent-time pairs. CL�(�) is � modi�ed by \clamping" the

states corresponding to all elements of � to some arbitrary pre-�xed value, here taken to be ~0.

The wonderful life utility (WLU) for � at � is de�ned as:

WLU�(�) � G(�)�G(CL�(�)) : (2)

In particular, the WLU for the e�ect set of node � is G(�)�G(CL
C
eff

�

(�)).

�'s e�ect set WLU is analogous to the change world utility would undergo had node � \never

existed". (Hence the name of this utility - cf. the Frank Capra movie.) However CL(:) is a purely

\�ctional", counter-factual mapping, in that it produces a new � without taking into account the

system's dynamics. The sequence of states produced by the clamping operation in the de�nition

of the WLU need not be consistent with the dynamical laws embodied in C. This is a crucial

strength of e�ect set WLU. It means that to evaluate that WLU we do not try to infer how the

system would have evolved if node �'s state were set to ~0 at time 0 and the system re-evolved. So

long as we know G and the full �, and can accurately estimate what agent-time pairs comprise

Ceff

�
, we know the value of �'s e�ect set WLU | even if we know nothing of the details of the

dynamics of the system.

Theorem 1: A COIN is factored if g� =WLU
C
eff

�

8� (proof in [14]).

If our system is factored with respect to personal utilities fg�g, then we want each �
�;0

to

be a state with as high a value of g�(C(�
;0
)) as possible. Assuming � is ML-based and able to

achieve close to the largest possible value of any private utility speci�ed in �
�;0

, we would likely
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be in such a state of high personal utility if �'s private utility were set to the associated personal

utility: � � �
�;0;private�utility

= g�. Enforcing this equality, our problem becomes determining

what f�g the agents will best be able to maximize while also causing dynamics that is factored

with respect to the f�g.

Now regardless of C(:), both � = G 8� and � = WLU
C
eff

�

8� are factored systems (for

g� = �). However since each agent is operating in a large system, it may experience di�culty

discerning the e�ects of its actions on G when G sensitively depends on all components of the

system. Therefore each � may have di�culty learning how to achieve high � when � = G.

This problem can be obviated using e�ect set WLU as the private utility, since the subtraction

of the clamped term removes some of the \noise" of the activity of other agents, leaving only the

underlying \signal" of how the agent in question a�ects the utility.

We can quantify this signal/noise e�ect by comparing the rami�cations on the private util-

ities arising from changes to �
�;0

with the rami�cations arising from changes to �
�̂;0

, where �̂

represents all nodes other than �. We call this quanti�cation the learnability ��;� (�):

��;� (�) �
k~r�

�;0

�(C(�
;0
))k

k~r�
�̂;0

�(C(�
;0
))k

: (3)

Theorem 2: Let � be a set containing Ceff

�
. Then

��;WLU�
(�)

��;G(�)
=

k~r�
�̂;0

G(C(�
;0
))

k~r�
�̂;0

G(C(�
;0
))� ~r�

�̂;0

G(CL�(C(�
;0
)))k

proof in [14]:

This ratio of gradients should be large whenever � is a small part of the system, so that the

clamping won't a�ect G's dependence on �
�̂;0

much, and therefore that dependence will approxi-

mately cancel in the denominator term. In such cases, WLU will be factored just as G is, but far

more learnable. The experiments presented below illustrate the power of this fact in the context

of the bar problem, where one can readily approximate e�ect set WLU and therefore use a utility

for which the conditions in Thm.'s 1 and 2 should approximately hold.

3 Experiments

We modi�ed Arthur's original problem to be more general, and since we are not interested here in

directly comparing our results to those in [1, 2, 4, 8], we use a more conventional ML algorithm

than the ones investigated in [1, 2, 4, 8, 13], an algorithm that approximately minimizes free

energy. These modi�cations are similar to those in [3].

There are N agents, each picking one of seven nights to attend a bar the following week, a

process that is then repeated. In each week, each agent's pick is determined by its predictions of

the associated rewards it would receive. Each such prediction in turn is based solely upon the

rewards received by the agent in those preceding weeks in which it made that pick.

The world utility is G(�) =
P

t
RG(�

;t
), where RG(�

;t
) �
P7

k=1 �k(xk(�; t)), xk(�; t) is the

total attendance on night k at week t, �k(y) � �ky exp (�y=c); and c and the f�kg are real-

valued parameters. Intuitively, this G is the sum of the \world rewards" for each night in each

week. Our choice of �k(:) means that when too few agents attend some night in some week, the

bar su�ers from lack of activity and therefore the world reward is low. Conversely, when there

are too many agents the bar is overcrowded and the reward is again low.
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Two di�erent ~�'s are investigated. One treats all nights equally; ~� = [1 1 1 1 1 1 1]. The

other is only concerned with one night; ~� = [0 0 0 7 0 0 0]. c = 6 and N is 4 times the number

of agents needed to allow c agents to attend the bar on each of the seven nights, i.e., there are

4 � 6 � 7 = 168 agents. For the purposes of the CL operation, an agent's action at time t is

represented as a unary seven-dimensional vector, so the \clamped pick" is (0,0,0,0,0,0,0).

Each � has a 7-dimensional vector representing its estimate of the reward it would receive

for attending each night of the week. At the end of each week, the component of this vector

corresponding to the night just attended is proportionally adjusted towards the actual reward

just received. At the beginning of the succeeding week, to trade o� exploration and exploitation,

� picks the night to attend randomly using a Boltzmann distribution with 7 energies �i(�) given

by the components of �'s estimated rewards vector, and with a temperature decaying in time.

This distribution of course minimizes the expected free energy of �, E(�(�))�TS, or equivalanetly

maximizes entropy S subject to having expected energy given by T . This learning algorithm is

similar to Claus and Boutilier's independent learner algorithm [6].

We considered three agent reward functions, using the same learning parameters (learning

rate, Boltzmann temperature, decay rates, etc.) for each. The �rst reward function had � =

G 8�, i.e., agent �'s reward function equals RG. The other two reward functions are:

Uniform Division (UD): RUD;�(�
;t
) � �d� (xd� (�; t))=xd�(�; t)

Wonderful Life (WL): RWL;�(�
;t
) � RG(�

;t
)�RG(CL�(�

;t
)) ;

where d� is the night picked by �. The original version of the bar problem in the physics

literature [4] is a special case where there are two \nights" in the week (one of which corresponds

to \staying at home"); ~� is uniform; �k(xk) = mini(xi)�k;argmini(xi); and RUD� is used.

The conventional RUD reward is a \natural" reward function to use; each night's total re-

ward is uniformly divided among the agents attending that night. In particular, if g� = � �P
t
RUD;�(�; t), G(�) =

P
�
g�(�), so the \alternative desideratum" discussed above is met. In

contrast, RG results in the system meeting the desideratum of factoredness. RG su�ers from

poor learnability, at least in comparison to that of RWL; by Eq. 3 the ratio of learnabilities is

approximately 11 (see [14] for details). As another point of comparison, to evaluate RWL each

agent only needs to know the total attendance on the night it attended, unlike with RG, which

requires centralized communication concerning all 7 nights.

Finally, in the bar problem the only interaction between any pair of agents is indirect, via

small e�ects on each others' rewards; each �'s action at time t has its primary e�ect on �'s own

future actions. So the e�ect set of �'s entire sequence of actions is well-approximated by �
�;
. In

turn, since that sequence is all that is directly a�ected by the choice of �'s private utility, the

e�ect set of �
�;0;private�utility

can be approximated by �
�;
, and therefore so can the e�ect set of

the full �
�;0

. Therefore we can approximate the e�ect set WLU for � as
P

t
RWLU ;�(�

�;t;pick
).

So we expect that use of RWLU ;� should result in (close to) factored dynamics.

Figure 1 graphs world reward value as a function of time, averaged over 50 runs, for all three

reward functions, for both ~� = [1 1 1 1 1 1 1] and ~� = [0 0 0 7 0 0 0]. Performance

with RG eventually converges to the global optimum. This agrees with the results obtained

by Crites [7] for the bank of elevators control problem. Systems using RWL also converged

to optimal performance. This indicates that in the bar problem �'s e�ect set is su�ciently

well-approximated by �'s future actions so that the conclusions of theorems 1 and 2 hold.

However since the RWL reward has better \signal to noise" than than the RG reward (see

above), convergence with RWL is far quicker than with RG. Indeed, when ~� = [0 0 0 7 0 0 0],

systems using RG converge in 1250 weeks, which is 5 times worse than the systems using RWL.

When ~� = [1 1 1 1 1 1 1] systems take 6500 weeks to converge with RG, which is more than 30
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Figure 1: Average world reward when ~� = [0 0 0 7 0 0 0] (left) and when ~� = [1 1 1 1 1 1 1]

(right). In both plots the top curve is RWL, middle is RG, and bottom is RUD .

times worse than the time with RWL. This slow convergence of systems using RG is a result of

the reward signal being \diluted" by the large number of agents in the system.

In contrast to the behavior for COIN theory-based reward functions, use of conventional RUD

reward results in very poor world reward values that deteriorated with time. This is an instance

of the TOC. For example, when ~� = [0 0 0 7 0 0 0], it is in every agent's interest to attend the

same night | but their doing so shrinks the world reward \pie" that must be divided among

all agents. A similar TOC occurs when ~� is uniform. This is illustrated in �g. 2 which shows

a typical example of fxk(�; t)g for each of the three reward functions for t = 2000. In this

example using RWL results in optimal performance, with 6 agents each on 6 separate nights, and

the remaining 132 agents on one night (average world reward of 13.05). In contrast, RUD results

in a uniform distribution of agents and has the lowest average world reward (3.25). Use pf RG

results in an intermediate average world reward (6.01).
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Figure 2: Typical daily attendance when ~� = [1 1 1 1 1 1 1] for RWL, RG, and RUD , respectively.
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Figure 3: Behavior of each reward function with respect to the number of agents for

~� = [0 0 0 7 0 0 0].

Figure 3 shows how performance at t = 2000 scales with N for each reward function for
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~� = [0 0 0 7 0 0 0]. Systems using RUD perform poorly regardless of N . Systems using RG

perform well when N is low. As N increases however, it becomes increasingly di�cult for the

agents to extract the information they need from RG. (This problem is signi�cantly worse for

uniform ~�.) Systems using RWL overcome this learnability problem because RWL is based on

clamping of all agents but one, and therefore is not appreciably a�ected by N .

4 Conclusion

The theory of COINs is concerned with distributed systems of controllers in which each controller

strives to minimize an associated local energy function. That theory suggest how to initialize

and then update those local energy functions so that the resultant global dynamics will achieve

a global goal. In this paper we present a summary of the part of that theory dealing with how to

initialize the local energy functions. We present experiments applying that theory to the control

of individual agents in di�cult variants of Arthur's El Farol Bar problem. In those experiments,

the COINs quickly achieve nearly optimal performance, in contrast to the other systems we

investigated. This demonstrates that even when the conditions required by the initialization

theorems of COIN theory do not hold exactly, they often hold well enough so that they can

be applied with con�dence. In particular the COINs automatically avoid the tragedy of the

commons inherent in the bar problem.
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